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ABSTRACT

Endocrine adjuvant therapy for breast cancer in recent years has focussed primarily on the use
of tamoxifen to inhibit the action of estrogen in the breast. The use of aromatase inhibitors has found
much less favor due to poor efficacy and unsustainable side effects. Now, however, the situation is
changing rapidly with the introduction of the so-called phase III inhibitors, which display high affinity
and specificity towards aromatase. These compounds have been tested in a number of clinical settings
and, almost without exception, are proving to be more effective than tamoxifen. They are being
approved as first-line therapy for elderly women with advanced disease. In the future, they may well
be used not only to treat young, postmenopausal women with early-onset disease but also in the
chemoprevention setting. However, since these compounds inhibit the catalytic activity of aromatase,
in principle, they will inhibit estrogen biosynthesis in every tissue location of aromatase, leading to
fears of bone loss and possibly loss of cognitive function in these younger women. The concept of
tissue-specific inhibition of aromatase expression is made possible by the fact that, in postmenopausal
women when the ovaries cease to produce estrogen, estrogen functions primarily as a local paracrine
and intracrine factor. Furthermore, due to the unique organization of tissue-specific promoters,
regulation in each tissue site of expression is controlled by a unique set of regulatory factors. These
factors are potential targets for the design of selective aromatase modulators, which could selectively
inhibit aromatase expression in breast with the same efficacy as the phase III inhibitors of activity but
leave expression in other local sites such as bone and brain untouched.

I. Aromatase and Its Gene

Estrogen biosynthesis is catalyzed by a microsomal member of the cyto-
chrome P450 superfamily, namely, aromatase cytochrome P450 (P450arom, the
product of theCYP19 gene). The P450 gene superfamily is a very large one,
containing (as of 1996) over 480 members in 74 families, of which cytochrome
P450arom is the sole member of family 19 (Nelsonet al., 1996). This heme
protein is responsible for binding of the C19 androgenic steroid substrate and
catalyzing the series of reactions leading to formation of the phenolic A ring
characteristic of estrogens.
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The human CYP19 gene was cloned some years ago (Means et al., 1989;
Harada et al., 1990; Toda et al., 1990), when it was shown that coding region
spans nine exons, beginning with exon II. Upstream of exon II are a number of
alternative first exons that are spliced into the 5�-untranslated region of the
transcript in a tissue-specific fashion (Figure 1). For example, placental tran-
scripts contain at their 5�-end a distal exon, I.1. This is because placental
expression is driven by a powerful distal promoter upstream of exon I.1 (Means
et al., 1991). Examination of Human Genome Project data reveals that exon I.1
is 89 kb upstream of exon II (Sebastian and Bulun, 2001). On the other hand,
transcripts in ovary and testes contain at their 5�-end sequence that is immedi-
ately upstream of the translational start site. This is because expression of the
gene in the gonads utilizes a proximal promoter, promoter II. By contrast,
transcripts in cells of mesenchymal origin (e.g., adipose stromal cells, osteo-
blasts) contain yet another distal exon (I.4) located 20 kb downstream of exon I.1
(Mahendroo et al., 1993). Adipose tissue transcripts also contain promoter
II-specific exonic sequences that are undetectable in bone (Shozu and Simpson,
1998).

Splicing of these untranslated exons to form the mature transcript occurs at
a common 3�-splice junction upstream of the translational start site. This means
that although transcripts in different tissues have different 5�-termini, the coding
region – and thus the protein expressed in these various tissue sites – is always
the same. However, the promoter regions upstream of each of the several
untranslated first exons have different cohorts of response elements, so regulation
of aromatase expression in each tissue differs. Thus, the gonadal promoter (II)
binds the transcription factors cyclic AMP (cAMP) response binding protein
(CREB) and steroidogenic factor 1 (SF1), so aromatase expression in gonads is
regulated by cAMP and gonadotrophins. In adipose tissue, promoter II-mediated
expression is stimulated by prostaglandin E2. On the other hand, promoter I.4 is
regulated by class I cytokines such as interleukin (IL)-6, IL-11, and oncostatin M
as well as by tumour necrosis factor alpha (TNF�). Thus, the regulation of
estrogen biosynthesis in each tissue site of expression is unique (reviewed in
Simpson et al., 1997). This situation leads to a complex physiological situation
that makes, for example, interpretation of circulating estrogen levels as a marker
of aromatase activity in specific tissues or in response to specific stimuli very
difficult.

II. The Concept of Local Estrogen Biosynthesis

In premenopausal women, the ovaries are the principal source of estrogen,
which functions as a circulating hormone to act on distal target tissues. However,
this is no longer the case in postmenopausal women, when the ovaries cease to
produce estrogens, and in men. Under these circumstances, estradiol is no longer
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solely an endocrine factor. Instead, it is produced in a number of extragonadal
sites where it acts locally, including the mesenchymal cells of adipose tissue,
osteoblasts and chondrocytes of bone, the vascular endothelium and aortic

FIG. 1. Genomic organization of the human CYP19 gene. BLAST searches of various
promoters and coding region revealed alignment to distinct locations in two overlapping BAC clones
of chromosome 15q 21.2 region. The distance of each promoter with respect to the first coding exon
(exon II) also was determined. The major placental promoter I.1 is the most distally located
(approximately 89 kb). Even though each tissue expresses a unique untranslated first exon 5�-
untranslated region (UTR), by splicing into a highly promiscuous splice acceptor site (AG/A�ACT)
of exon II, the coding region and the translated protein is identical in all tissue sites of expression.
[Adapted with permission from Sebastian S, Bulun SE 2001 A highly complex organization of the
regulatory region of the human CYP19 (aromatase) gene revealed by the human genome project.
J Clin Endocrinol Metab 86:4600–4602. Copyright The Endocrine Society.]
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smooth muscle cells, and numerous sites in the brain. Thus, circulating levels of
estrogens in postmenopausal women and in men are not the sole drivers of
estrogen action: they may be predominantly reactive rather than proactive. This
is because circulating estrogen in this situation originates in extragonadal sites,
where it acts locally. If it escapes local metabolism, it enters the circulation.
Therefore, circulating levels in large part reflect, rather than direct, estrogen
action in postmenopausal women and in men.

Extragonadal sites of estrogen biosynthesis possess several fundamental
features that differ from those of the ovaries. First, the estrogen synthesized
within these compartments acts predominantly at the local tissue level in a
paracrine or intracrine fashion (Labrie et al., 1997,1998) (Figure 2). The total
amount of estrogen synthesized by these extragonadal sites may be small but the
local tissue concentrations achieved are probably high and exert biological
influence locally. As a consequence, extragonadal estrogen biosynthesis plays an
important but hitherto largely unrecognised physiological and pathophysiological
role.

The power of local estrogen biosynthesis is illustrated in the case of
postmenopausal breast cancer (Pasqualini et al., 1996). It has been determined
that the concentration of estradiol present in breast tumours of postmenopausal
women is at least 20-fold greater than that present in the plasma. With aromatase
inhibitor therapy, intratumoural concentrations of estradiol and estrone drop
precipitously, together with a corresponding loss of intratumoural aromatase
activity, consistent with this activity being within the tumour and the surrounding

FIG. 2. Modes of action of endocrine, paracrine, autocrine, and intracrine factors.
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breast adipose tissue and being responsible for these high tissue concentrations
(DeJong et al., 1997). Studies to assess directly the proportion of estrogen that is
synthesized in breast tumours as opposed to reaching them from the blood are
technically difficult but particularly instructive. The studies of Reed and col-
leagues as well as of Miller (Reed et al., 1989; Miller, 1999) indicate that the
majority of breast tumours generate estrogen through the intratumoural route.
However, this varies substantially between tumours, and overall, about half of the
estrogen is produced locally within the tumour or surrounding tissue (Miller,
1999).

In bone, aromatase is expressed primarily in osteoblasts and chondrocytes
(Sasano et al., 1997). Aromatase activity in cultured osteoblasts is comparable to
that present in adipose stromal cells (Shozu and Simpson, 1998). Thus, it appears
that in bone also, local aromatase expression is a major source of estrogen
responsible for the maintenance of mineralization (although this is extremely
difficult to prove due to sampling problems). Hence, for both breast tumours and
bone, it is likely that circulating estrogen levels are only partly responsible for the
relatively high endogenous tissue estrogen levels. The circulating levels reflect
the sum of local formation in its various sites. This is a fundamental concept for
interpreting relationships between circulating estrogen levels in postmenopausal
women and estrogen insufficiency in specific tissues.

The second important point is that estrogen production in these extragonadal
sites is dependent on an external source of C19 androgenic precursors, since these
extragonadal tissues are incapable of converting cholesterol to the C19 steroids
(Labrie et al., 1997a,1998). As a consequence, circulating levels of testosterone
and androstenedione as well as dehydroepiandrosterone (DHEA) and DHEA
sulfate (DHEAS) become extremely important in terms of providing adequate
substrate for estrogen biosynthesis in these sites.

It should be pointed out that, in the postmenopausal woman, circulating
testosterone and androstenedione levels are an order of magnitude greater than
circulating estradiol and estrone levels. Differences in the levels of circulating
androgens are likely to be important determinants for maintenance of local
estrogen levels in extragonadal sites. Moreover, in men, circulating testosterone
levels are an order of magnitude greater than those in postmenopausal women. In
postmenopausal women, the ovaries secrete 25–35% of the circulating testoster-
one. The remainder is formed peripherally from androstenedione and DHEA
produced in the ovaries and from androstenedione, DHEA, and DHEAS secreted
by the adrenals. However, the secretion of these steroids and their plasma
concentrations decrease markedly with advancing age (Labrie et al., 1997b).

In this context, it is appropriate to consider why osteoporosis is more
common in women than in men and why it affects women at a younger age in
terms of fracture incidence. We have suggested that uninterrupted sufficiency of
circulating testosterone in men throughout life supports the local production of
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estradiol by aromatization of testosterone in estrogen-dependent tissues. This
affords ongoing protection against the so-called estrogen deficiency diseases.
This appears to be important in terms of protecting the bones of men against
mineral loss and also may contribute to the maintenance of cognitive function
and prevention of Alzheimer’s disease (Simpson et al., 2000).

III. Aromatase Inhibitors

A. BACKGROUND

A large number of aromatase inhibitors have been developed and utilised in
clinical studies over the last 20 years. The most successful are now being licensed
mainly for breast cancer treatment (Buzdar and Howell, 2001; Goss and Strasser,
2001).

This development was prompted by the recognition that the cytochrome
P450 inhibitor aminoglutethimide is an aromatase inhibitor (Thompson and
Siiteri, 1974) and exerts its therapeutic effectiveness in postmenopausal women
with advanced breast cancer via the inhibition of aromatase (Santen et al., 1978;
Stuart-Harris et al., 1984). This recognition validated aromatase as a new target
for treatment of breast cancer patients with hormone-dependent disease. The
widespread acceptance that aminoglutethimide was anything but a perfect drug
(e.g., significant clinical side effects, incomplete inhibition of aromatase, poor
selectivity for aromatase leading to adrenal suppression) and the need for
combination with glucocorticoid led to the development of numerous new drugs.
These have generally been categorised as first-, second-, and third-generation
inhibitors. Figure 3 categorises the structures of a selection of the most promi-
nent. Aminoglutethimide is recognised as the dominant first-generation com-
pound. The second generation showed improved potency but either metabolic or
symptomatic side effects limited the dose at which these inhibitors could be used.
Therefore, overall pharmacological efficacy of the compounds was no greater
than that of aminoglutethimide itself (Boeddinghaus and Dowsett, 2001). In
contrast, the third-generation compounds have been found to be highly specific
and well tolerated such that they have been usable at dosages that effectively
obliterate the activity of aromatase.

Many pathological states at least partly depend on continued estrogen
stimulation and, thus, in principle, might be expected to be good targets for
aromatase inhibition. However, most of these diseases (e.g., endometriosis,
fibroids) are almost entirely limited to premenopausal women and are not subject
to targeting with aromatase inhibitors alone. Thus, the clinical application of
inhibitors has been confined almost entirely to the main estrogen-dependent
disease in postmenopausal women (i.e., breast cancer).

322 EVAN R. SIMPSON & MITCH DOWSETT



B. STRUCTURE AND BASIS OF INHIBITION

There are two main structural types of aromatase inhibitor: 1) steroidal,
substrate analogs such as 4-hydroxyandrostenedione (formestane) and exemes-
tane, and 2) nonsteroidal compounds that operate by virtue of their interaction
with the cytochrome P450 heme prosthetic group of the aromatase enzyme (Kao
et al., 1996). These are known as type I and type II inhibitors, respectively. While
the steroidal group includes inhibitors that act in a competitive manner, those of

FIG. 3. Chemical structures of the most widely used aromatase inhibitors.
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greatest contemporary interest and clinical importance act as enzyme inactivators
or suicide inhibitors (Brodie et al., 1981; Lonning, 2000). This activity requires
that the enzyme itself converts the inhibitor to a chemically reactive intermediate
that binds irreversibly and covalently to the protein structure of the enzyme-
substrate binding site. Thus, the individual enzyme molecule is irreversibly
inactivated and the inhibitor molecule is no longer available to interact with other
enzyme molecules. These types of inhibitors have the potential for exquisite
selectivity for the enzyme target and long-term effectiveness, since the recovery
of enzyme activity depends on the re-synthesis of enzyme as well as on the
pharmacokinetics of the drug. However, such steroidal structures also have the
potential for hormonal activity. The potential advantage of long-term effective-
ness is of little importance when the turnover of enzyme is rapid. It is notable that
plasma estradiol levels rise relatively rapidly after cessation of orally adminis-
tered formestane (Dowsett et al., 1987). This suggests that the aromatase enzyme
is replenished in peripheral tissues within about 24 hours. Thus, this inactivation
type of mechanism has yet to be demonstrated to be of significant clinical
advantage (see below).

All type 2 inhibitors have a basic nitrogen atom that allows them to interact
with the iron atom of the heme prosthetic group of the enzyme (Kao et al., 1996).
Their specificity for inhibition of the aromatase enzyme (as opposed to the very
large number of other cytochrome P450 enzymes) is determined by the other
structural aspects of the drugs and the way that these allow a close fit to the
substrate-binding site of aromatase. This results in high-affinity binding and
limits the fit into the substrate-binding site of other enzymes. A full understand-
ing of these molecular interactions has been restricted by the unavailability of a
crystallized aromatase preparation for structural analysis of the inhibitor-enzyme
interaction. Thus, computer-generated models have depended largely on the
structural analogies that can be surmised between aromatase and the few
cytochrome P450 enzymes whose structure has been determined (Graham-
Lorence et al., 1995; Graham-Lorence and Peterson, 1996). Use of such models
has illustrated the much-better fit to the substrate-binding site of aromatase by the
triazole compounds anastrozole, letrozole, and vorozole than by aminoglutethim-
ide, with letrozole and vorozole apparently having a somewhat more complete
space-filling effect (Kao et al., 1996).

The potency of these drugs generally has been assessed in vitro using human
placental microsomal aromatase preparations. In this type of assay, fadrozole is
one of the most potent drugs known, having an IC50 of 5 nM. However, its
potency in vivo has been compromised by very rapid metabolism such that its in
vitro activity has not been matched in in vivo studies (Bhatnagar et al., 2001).
Letrozole and anastrozole appear to have relatively similar IC50s to each other.
But when these compounds have been tested on intact cells – including hamster
ovarian tissue, human breast fibroblasts, and aromatase-transfected human breast
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cancer cells – a 10- to 30-fold difference in effectiveness has been found, with
letrozole being the more potent. The explanation for the difference in the
measurements made in intact cell and cell-free systems is not clear but may be
related to uptake of the respective compounds. It might be expected that the intact
cell systems would more accurately predict the likely effectiveness of these
compounds in the in vivo setting.

C. PRECLINICAL MODEL SYSTEMS

Until recently, preclinical modelling of the use of aromatase inhibitors in
rodents has been largely limited to premenopausal systems (i.e., those with intact
ovarian function) because rodents appear to have little peripheral aromatase
activity (in contrast to postmenopausal women, where these drugs have found
their greatest application). In these models, the aromatase inhibitors generally
have been shown to have good antitumour activity on carcinogen-induced
mammary tumours (DeCoster et al., 1992; Brodie et al., 1983). However, the
compounds also have had a marked effect on ovarian morphology, with the
induction of multiple follicles due to the increase in gonadal stimulation from
loss of estrogen feedback on the hypothalamic-pituitary axis (Shetty et al., 1997).

More recently, model systems have focused on the use of aromatase-
transfected human MCF7 breast cancer cells in a xenograft model employing
athymic nude mice (Lee et al., 1995; Lu et al., 1998). These are more represen-
tative of the situation in postmenopausal women and rely on intratumoural
aromatase as their primary source of estrogen. Using such models, it has been
possible to show the effectiveness of contemporary aromatase inhibitors and
compare them with tamoxifen. In general, the inhibitors show greater efficacy
than tamoxifen (Lu et al., 1998). As always, the interpretation of these data
depends on the comparative pharmacology of the compounds in the mouse and
human and the degree to which the experimental tumour represents the range of
biological characteristics of human breast cancer.

D. PHARMACOLOGICAL EFFECTIVENESS

1. Peripheral Effects

Two methodologies have been used to estimate the clinical pharmacological
effectiveness of aromatase inhibitors. Most studies have accumulated data on the
effects of the compounds on plasma estrogen levels. This methodology, however,
suffers from a number of deficits. First, it cannot distinguish between effects on
production and those that changes in clearance may have. However, a more
important issue is the limited sensitivity of plasma estrogen assays: in effect, the
maximum degree of suppression that can be shown of primary estrogens (estrone
and estradiol) levels using the most sensitive immunoassays available is about
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85%. Many assays lack the sensitivity to show even this degree of efficacy. Thus,
comparing results between different studies and approaches has little validity.

Of substantially greater value has been application of the more complicated
methodology used to measure aromatase activity directly. This involves the
injection of [3H]-androstenedione and [14C]-estrone before and during the treat-
ment of women with the respective inhibitor (Jacobs et al., 1991). Collecting
urine over a 72-hour period and establishing the [3H]:[14C] ratio in the purified
estrogen fractions allow calculation of the peripheral aromatase activity in the
patient and the degree of inhibition exerted. An advantage of this methodology
is that the inclusion of [14C]-estrone provides an internal standard that permits
better comparability of results between studies and over time.

Table I compares the degree of aromatase inhibition achieved among drugs
of contemporary importance. This demonstrates that while aminoglutethimide
and the second-generation inhibitors suppress aromatase by little more than 90%
at their clinically used dosages, the new third-generation compounds approach
complete ablation of aromatase activity. In a recent study, letrozole was found to
inhibit by greater than 99% in all 12 patients (Geisler et al., 2001).

In contrast to the numerous effects of aminoglutethimide on adrenal steroidal
function and other cytochrome P450-dependent processes (e.g., prostaglandin
and thyroxine synthesis), the newer aromatase inhibitors essentially are com-
pletely specific at clinical dosages. Exemestane causes minor reduction in sex
hormone-binding globulin (SHBG) levels, probably due to its androgenic nature.
Letrozole has been noted to exert a statistically significant effect on corticotropin
(ACTH)-stimulated adrenal function (Bajetta et al., 1999). However, these
effects are unlikely to be of clinical significance.

TABLE I
Degree of Whole-body Aromatase Inhibition by Drugs Used in Breast Cancer Clinical Efficacy

Drug Dose
Mean percentage

inhibition Reference

Aminoglutethimide
(� hydrocortisone)

1000 mg (� 40 mg)/d 90.6 MacNeill et al., 1992

Formestane 250 mg/2 w (im) 84.8 Jones et al., 1992

Fadrozole 2 mg/d 82.4 Lonning et al., 1991

Vorozole 1 mg/d 93.0 Van der Wall et al., 1993

Letrozole 2.5 mg/d � 99.1 Geisler et al., 2001

Anastrozole 1 mg/d 97.3 Geisler et al., 2001

Exemestane 25 mg/d 97.9 Geisler et al., 1998

[All analyses, other than Van der Wall et al. (1993) were conducted in the Dowsett laboratory.]
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2. Premenopausal Women

The observation that formation of multiple ovarian follicles occurs upon
administration of aromatase inhibitors in animal model systems has discour-
aged the widespread investigation of these compounds in premenopausal
women (Shetty et al., 1997). Studies with aminoglutethimide generally reveal
that estrogen synthesis is largely unaffected by the aromatase inhibitor,
although increases in gonadotrophins indicated a degree of compensated
inhibition. Application of the more potent steroidal aromatase inhibitor,
4-hydroxyandrostenedione, even at the high dose of 500 mg/week, had no
significant impact on premenopausal estrogen levels. The only data from use
of a potent nonsteroidal aromatase inhibitor in premenopausal women are
from a single-dose study with vorozole. It showed some degree of suppres-
sion but duration with repeated doses is unknown. Thus, for the moment,
application of aromatase inhibitors to treatment of premenopausal women
with breast cancer is limited to their combined usage with gonadotropin-
releasing hormone (GnRH) agonists such as goserelin. However, successful
use of letrozole in ovulation induction in women with anovulatory infertility
recently was reported (Mitwally and Casper, 2001). This is an area that merits
substantial further investigation.

3. Intratumoural Effects

The observation that the aromatase enzyme is expressed in both normal and
malignant breast has led to substantial investigation of the significance of enzyme
source. In postmenopausal women, estrogen that is produced locally likely would
cause at least as much stimulation of breast tissues as that by estrogen derived
from the circulation. It is clear that aromatase inhibitors effectively suppress
estrogen synthesis within the breast in almost all cases (DeJong et al., 1997;
Miller, 1999). The degree of residual aromatase activity in tumours is very
difficult to estimate, however.

Studies by Miller’s group have indicated that a significant association may
exist between the presence of intratumoural aromatase and the lesion’s response
to aromatase inhibitors (Miller and O’Neill, 1987). However, expanding these
studies to the large scale required to establish any clinical utility of this
observation has been limited by the relatively large mass of fresh tissue required
to make the measurements. It is hoped that, in the near future, sensitive and
specific antibodies will permit the characterisation of aromatase expression in
breast carcinomas using immunohistochemical techniques. This will allow the
relationship between aromatase and the clinical benefit derived from aromatase
inhibitors to be established more conclusively.

327AROMATASE INHIBITORS & BREAST CANCER THERAPY



4. Application of Aromatase Inhibitors in Breast Cancer

Most data on the effectiveness of aromatase inhibitors in breast cancer are
from studies of locally advanced or metastatic disease. Comparative clinical trials
have established that the third-generation compounds letrozole and vorozole are
more effective than aminoglutethimide and that letrozole is more effective than
fadrozole (Bergh et al., 1997; Gershanovich et al., 1998; Tominaga et al., 1998).
These data are important because they establish that drugs that achieve essen-
tially complete inhibition of aromatase are more efficacious than those that
suppress aromatase by approximately 90%. Thus, over this range of suppression,
a clinical response:dose relationship with aromatase inhibition seems to exist.

All of the aromatase inhibitors have shown some benefit over megestrol
acetate, the previously standard second-line agent for advanced breast cancer
treatment (Buzdar et al., 1996; Dombernowsky et al., 1998; Kaufmann et al.,
2000). Aromatase inhibitors have supplanted this agent as the second-line agent
of choice.

The most important clinical data, some of the most important in the
hormonal treatment of breast cancer for the last decade, have matured over the
last couple of years. For over 20 years, tamoxifen was the most widely used agent
in breast cancer treatment because of its efficacy and excellent tolerability.
Comparative studies of tamoxifen with aminoglutethimide and the second-
generation inhibitors, 4-hydroxyandrostenedione and fadrozole, showed no im-
provement in efficacy of these inhibitors over tamoxifen (Perez Carrion et al.,
1994; Thurlimann et al., 1996) in advanced beast cancer. However, large clinical
trials of tamoxifen versus the third-generation nonsteroidal aromatase inhibitors,
anastrozole and letrozole, have reported greater efficacy of the aromatase
inhibitors over the antiestrogen (Nabholtz et al., 1999; Bonneterre et al., 2000;
Mouridsen et al., 2001). Thus, in patients with estrogen receptor- and/or proges-
terone receptor-positive advanced breast cancer, an aromatase inhibitor will now
be the first agent of choice.

5. Neoadjuvant Therapy

The conventional approach to the management of operable breast cancer is
the immediate removal of the primary lesion and the subsequent delivery of
adjuvant medical treatment. Neoadjuvant therapy reverses this process such that
medical treatment is given prior to surgery. A series of small studies suggested
that aromatase inhibitors might be more effective than tamoxifen in this context
(Dixon et al., 1999), although this was not confirmed in a relatively small study
of vorozole versus tamoxifen (Harper-Wynne et al., 2001). Most importantly,
however, a large, double-blind, randomized study has confirmed that letrozole is
a substantially more effective agent in primary breast cancer therapy than is
tamoxifen, thus confirming the enhanced effectiveness of this compound in
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advanced disease (Ellis et al., 2001). Neoadjuvant studies have the advantage of
allowing correlation between the presence of specific biomarkers in the disease
before treatment and the clinical response in the same lesion immediately
afterwards. Particularly provocative data (Ellis et al., 2001) indicate that letrozole
is more effective in steroid-receptor positive tumours, which are also either
epidermal growth factor (EGF) receptor or HER-2 positive, than in those that are
growth factor receptor negative (Figure 4). While this observation concurs with
some preclinical studies (Kurokawa et al., 2000), further clinical evidence is
required to confirm these potentially highly important data.

6. Adjuvant Therapy

Survival benefit rarely is shown in comparative advanced breast cancer
studies. Medical agents generally need to be applied immediately after surgery as
adjuvant therapy to achieve marked improvements in survival. It is well estab-
lished that in estrogen receptor-positive disease, tamoxifen reduces the odds of
death by about 30% after 5 years of use (Early Breast Cancer Trialists’

FIG. 4. Response rates to letrozole and tamoxifen according to HER2/EGFr studies in a
neoadjuvant clinical trial in primary breast cancer. All patients were either EDR or PgR positive.
[Data from Ellis MJ, Coop A, Singh B, Mauriac L, Llombert-Cussac A, Janicke F, Miller WR, Evans
DB, Dugan M, Brady C, Quebe-Fehling E, Borgs M 2001 Letrozole is more effective neoadjuvant
endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive
primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol 19:3808–3816.]
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Collaborative Group, 1998). The very encouraging data from comparisons
between tamoxifen and aromatase inhibitors in advanced breast cancer and
neoadjuvant therapy prompt the hope that the inhibitors can improve upon the
survival seen with tamoxifen in adjuvant therapy. Thus, several very large
comparative trials of aromatase inhibitors versus tamoxifen and others will assess
the application of these agents in sequence in patients with no apparent metastatic
disease. It is important to note that long-term side effects may be as important as
efficacy data in this population of patients. It is clear that estrogen deprivation
might have adverse effects on the integrity of bone in postmenopausal women
(Harper-Wynne et al., 2001). Possible effects on cardiovascular and cognitive
function could adversely influence the applicability of inhibitors in this context.
Thus, each of the ongoing, large studies is systematically collecting detailed
information on these issues of tolerability.

7. Prospects for Preventative Use

The involvement of estrogens as promoters of breast cancer is very well
established, being based on a wealth of indirect epidemiological evidence
(Henderson, 1989). For example, early menarche and late menopause, which
extend the exposure of the breast to cyclical estrogenic stimuli, both increase risk
of breast cancer. Obesity in postmenopausal women, which increases the plasma
concentrations of estrogens, and the application of hormone replacement therapy
also enhance breast cancer risk. Of particular note is a series of prospective
studies that have collected plasma from women many years before they devel-
oped breast cancer. This study has consistently indicated that increased plasma
levels of estrogen are associated with increased breast cancer incidence (Thomas
et al., 1997). These observations have encouraged the experimental application
of agents that can attenuate the estrogenic stimulation of the breast as agents for
the prophylaxis of breast cancer. The observations that tamoxifen can reduce the
incidence of breast cancer in women at increased risk by approximately 50%
over a 4-year period (Fisher et al., 1998; Cauley et al., 2001) and that the
selective estrogen receptor modulator (SERM) raloxifene reduces the incidence
of breast cancer in women at high osteoporotic risk have both provided support
to this concept and have led aromatase inhibitors being considered as potential
preventative agents. The observation that fadrozole can markedly reduce the
incidence of sporadic mammary tumours in Sprague-Dawley rats over their
lifetime (Gunson et al., 1995) provides compelling support for this concept.

If the effects of tamoxifen and raloxifene are dependent on their antagonis-
ing estrogen signalling, the aromatase inhibitors would be expected to be at least
as effective in preventing breast cancer. An additional advantage of the inhibitors
over the SERMs is that the aromatase inhibitors would be expected to reduce
development of genotoxic DNA adducts that may result from the chemical

330 EVAN R. SIMPSON & MITCH DOWSETT



reactivity of catecholestrogen metabolites and have a theoretical basis for being
involved with breast cancer development (Cavalieri et al., 1997). However, in the
chemopreventive setting, side effects are of particular importance, especially in
women at only moderate risk. SERMs such as tamoxifen and raloxifene may
have an advantage over aromatase inhibitors in this regard. The former have been
found to reduce the incidence of osteoporotic fractures (Fisher et al., 1998;
Ettinger et al., 1999) and to have effects on lipids that might be expected to have
a beneficial effect on cardiac disease (Powles et al., 1989; Johnston et al., 2000).
In contrast, the SERMs have deleterious effects on incidence of thrombo-embolic
events and tamoxifen enhances the incidence of endometrial cancer (Fisher et al.,
1998). Any studies of aromatase inhibitors in the chemopreventative setting will
need to consider these issues and compare the effectiveness and side effects of
aromatase inhibitors with those of tamoxifen.

One approach to reducing the possible impact of aromatase inhibitors on
normal tissues would be to target the therapy at those women with the highest
exposure to endogenous estrogens. These could, for example, be identified by
plasma estrogen measurements or, alternatively, by assessment of bone mineral
density (BMD). BMD tends to reflect long-term estrogen exposure and is itself
linked to breast cancer incidence. Rather than obliterating the residual estrogen
in these postmenopausal women, a partial reduction in estrogen levels to those in
women with low risk of breast cancer is an attractive concept. However, this may
be difficult to achieve with low-dose aromatase inhibitors because of variable
intersubject pharmacokinetics and pharmacodynamics.

IV. Selective Aromatase Modulators

Another approach to reducing the risk of side effects is to develop tissue-
specific inhibitors of aromatase expression, rather than inhibitors of the catalytic
activity. Third-generation aromatase inhibitors are finding utility in the treatment
of estrogen-dependent diseases such as breast cancer and, more recently, endo-
metriosis (Zeitoun et al., 1999). However, a disadvantage is that they inhibit
aromatase activity in a global fashion and thus could adversely impact sites
where estrogen is required for normal function (e.g., maintenance of bone
mineralization, prevention of hepatic steatosis and loss of cognitive function).
The concept of selective aromatase modulators (SAMs) is made possible by three
considerations. The first is that, in postmenopausal women and in men, estrogen
largely acts at a local level in sites where it is produced in a paracrine or even
intracrine fashion. Second, aromatase expression in these different tissue sites of
expression is regulated by tissue-specific promoters. Third, various tissue-
specific aromatase promoters employ different signalling pathways and thus
different cohorts of transcription factors. Therefore, it is possible to envision
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tissue-specific inhibition of aromatase expression in a similar fashion to the
concept of tissue-specific regulation of estrogen action (the concept of SERMs).

As indicated previously, when a breast tumour is present, aromatase activity
within the tumour and its surrounding adipose tissue is such that intratumoural
estradiol levels are at least an order of magnitude greater than those in circulating
plasma of postmenopausal women. (This may be one reason why HRT carries
relatively little increased risk of breast cancer.) This is because the tumour
produces factors that stimulate aromatase expression locally. This stimulation is
associated with switching of the aromatase gene promoter from I.4 to promoter
II, the gonadal-type promoter (Harada et al., 1993; Agarwal et al., 1996; Zhou et
al., 1997) (Figure 5). Thus, drugs that target promoter II-driven expression of
aromatase would be most useful. In postmenopausal women, this promoter
would appear to be exclusively utilized in tumour-containing breast tissue (and

FIG. 5. Proposed regulation of aromatase gene expression in breast adipose tissue from
cancer-free individuals and from those with breast cancer. In the former case, expression is stimulated
primarily by class I cytokines and tumour necrosis factor alpha produced locally, in the presence of
systemic glucocorticoids. As a consequence, promoter I.4-specific transcripts of aromatase predom-
inate. In the latter case, aromatase expression is increased and promoter II-specific transcripts of
aromatase predominate, suggesting a major role for prostaglandin E2 (PGE2) in aromatase expres-
sion. PGE2 in this case could be derived from the tumourous epithelium, tumour-derived fibroblasts,
and/or macrophages recruited to the tumour site.
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in endometriotic plaques) (Agarwal et al., 1996; Zeitoun et al., 1999). Thus, bone
in particular, which does not express promoter-II specific transcripts (Shozu and
Simpson, 1998), would be spared.

Tumour-derived factors include prostaglandin E (PGE)2 (Schrey and Patel,
1995), which stimulates adenylate cyclase in adipose stromal cells, and promoter
II, which is regulated by cAMP. It was found that PGE2 is a powerful stimulator
of aromatase expression in these cells via promoter II (Zhao et al., 1996).
Moreover, expression of the CYP19 gene was correlated with COX-1 and
COX-2 expression in human breast cancer and normal tissue specimens
(Brueggemeier et al., 1999). A case-control study published some years ago
indicated that daily use of nonsteroidal, anti-inflammatory drugs such as ibupro-
fen reduced the incidence of breast tumours by up to 40% (Harris et al., 1996).
More recently, it has been shown that the COX-2 inhibitor, celecoxib, has strong
chemopreventive activity against mammary carcinoma in rats (Harris et al.,
2000). From these considerations, it appears likely that inhibition of aromatase
expression selectively in breast tissue could play an important role in this
chemopreventive action of cyclo-oxygenase inhibitors, which therefore might
qualify as the first generation of SAMs. However, ongoing research on regulation
of aromatase expression in the breast is likely to uncover other candidates in the
not-too-distant future.
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