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ABSTRACT

Statistical methods for analyzing data from DNA microarray experiments are reviewed.
Specifically, we discuss common experimental setups, methods for data reduction and clustering, and
analysis of time-course experiments. While early microarray studies focused mainly on the basic
methodological and technical aspects of DNA arrays, emphasis has shifted to biological, medical, and
clinical applications. We mention several of these and present results from our recent research as
illustrative examples. New developments in this ever-growing field are outlined.

I. Introduction and Outline

The recent development of DNA array technology, or DNA arrays — also
called microarrays, gene chips, DNA chips, and biochips — has enabled
researchers to monitor simultaneously levels of thousands of genes as they are
expressed in tissues, cell lines, patient samples, etc., at particular times and under
a variety of different conditions. Developed in 1996 (Lockhartet al., 1996), this
new technology has experienced a remarkable growth in popularity and utility, as
reflected in the number of papers published on the subject. A casual search of the
literature shows that the number of publications dealing with DNA array
technology has increased nearly exponentially over the past several years. In
1997, about eight papers were published on the subject, followed by 23 in 1998,
94 in 1999, 296 in 2000, and 1156 in 2001. From incomplete data for the first half
of 2002, one finds about 800 papers citing some aspect of microarray technology.

While early microarray studies mostly focused on the basic methodological
and technical aspects of DNA arrays (e.g., data normalization, error correction,
replication), emphasis has shifted to biological, medical, and clinical applica-
tions. DNA chips are being used in pharmacogenomics and pharmacogenetics,
toxicogenomics, human disease studies, disease screening, profiling and classi-
fication, diagnosis and clinical applications, and basic biological science studies.
In each case, the experimental design has to be planned to fit the questions being
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addressed. Following is a brief list describing the most-frequently used experi-
mental designs.

In a typical experimental situation with microarrays, one may want to:
1. Compare gene expressions obtained from two or more different tissues —

for example, healthy versus diseased tissue — in order to compare or classify
them. This type of experimental design has been used, for instance, to get clues
regarding mechanisms and causes of disease processes or to classify specific
clinical varieties of cancers/tumors according to their expression profiles, in order
to better predict prognosis (Golub et al., 1999; Dirix and van Oosterom, 2002).

2. Compare gene expression data obtained from the same tissue or cell line
at different time points, in order to follow the time course of expression. This
design can be used to monitor temporal gene expression patterns during the cell
cycle (Spellman et al., 1998; Tamayo et al., 1999) or during development (Wen
et al., 1998), temporal progression of a disease (Agrawal et al., 2002; Pomeroy
et al., 2002; Spies et al., 2002), or response to a treatment (Nesic et al., 2002;
Sotiriou et al., 2002).

3. Compare gene expression data obtained from different parts of the same
tissue, in order to reconstruct spatial distribution patterns of gene expressions. An
expanded version of this design, called voxelation, was used recently by Brown
et al. (2002), who correlated microarray data with the site of gene expression in
tissues by creating signatures of expression patterns in coronal hemisections at
the level of the hippocampus of the human brain. By combining the data for the
entire surface of a volume of brain section, a three-dimensional spatial pattern of
gene expression was generated. This important study (Peterson, 2002) combines
DNA array technology and brain-imaging technique, like functional magnetic
resonance imaging (fMRI), to represent the expression patterns of the whole
organ.

Irrespective of the type of microarray employed (e.g., cDNA, oligonucleo-
tide, spotted), such experiments generate tens of thousands of data points per
each measurement. In addition, depending on the experimental design, or the
number of samples, or the number of time points, the complete data set to be
analyzed often contains hundreds of thousands of gene expression levels. These
data are most commonly presented in tabular form (Quakenbush, 2001), called an
expression matrix (see Table I).

In Table I, “Gene 1” is the name of the first gene, “Gene 2” the second gene,
and so on. The column labeled “Experiment 1” lists data obtained from the first
microarray (or under one condition, or measured at one time point), the column
labeled “Experiment 2” lists the data obtained from the second microarray (or
under a second condition, or measured at a second time point), etc. Finally, the
entry (number) “Ei,k” is the measured expression level of gene i in the experiment
k, so that the entry “E1,1” is the expression level of “Gene 1” in “Experiment 1,”
the entry “E1,2” is the expression level of “Gene 1” in “Experiment 2,” etc.
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Typically, a single microarray contains many thousands or tens of thousands of
different probes (“Genes” ) and the complete experimental design may require
measurements from tens or even hundreds of such microarrays (“Experiments” ).
Complete data are collected in a matrix similar to Table I of a size that may be
10,000 � 50, which translates to half a million entries to be analyzed.

The main difficulty in statistical analysis of such data sets stems primarily
from the fact that one must deal with a small number of samples or “Experi-
ments” (i.e., cell lines, patients, time points), relative to the large number of
probes (“Genes” ). Moreover, the unnormalized, raw expression levels of differ-
ent genes in the same experiment (or under one condition, or at one time) (i.e.,
the numbers E1,1, E2,1, E3,1.. .) may have values that range over several orders of
magnitude — from values close to unity to values on the order of 105. The
ultimate goals are to establish how the expression level of some gene changes
from experiment to experiment and to identify groups of genes that exhibit
similar coexpression patterns. Statistical methods designed to deal with these
issues continue to be adapted and developed, since they are crucial for providing
useful data and for extracting reliable biological information from DNA array
experiments. This chapter reviews some of these methods, starting from the most
basic and working towards more complex ones. Some of our results, obtained by
using Affymetrix GeneChips, are described briefly in the form of illustrative
examples.

II. Fold Changes in Expression Levels

The critical issue is statistical handling of expression data, as one typically
wants to identify genes of potential interest and search for those that are
systematically up- or downregulated across experiments. For this limited pur-
pose, it suffices to perform simple statistical analysis of gene expression levels.
Early papers reported such analyses by presenting a list of genes that show
� 2-fold change in expression level. But even with this simple analysis, care
must be taken because of the aforementioned “ large number of probes vs. small

TABLE I
Schematic Tabulation of a Typical Gene Expression Data Set (“Expression Matrix”) in a

Complete Microarray Experiment

Experiment 1 Experiment 2 Experiment 3

Gene 1 E1,1 E1,2 E1,3

Gene 2 E2,1 E2,2 E2,3

Gene 3 E3,1 E3,2 E3,3
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number of experiments” problem. This is especially important if one wants to
attach statistical significance to the observed changes. For instance, to determine
the expression level of a single gene in one experiment (or under one condition),
one needs to make several replicate measurements — the more the better.
Performing many replicate experiments, however, often is not feasible, due to the
high cost of DNA chips or the limited amount of RNA or DNA material
available. Nevertheless, it has been our experience, in agreement with more-
formal reliability studies (Lee et al., 2000), that at least three replicates per
experiment must be made to have reasonable statistical confidence in the
expression values obtained. Once the expression value of a gene has been
established through replicate experiments under one condition, one wants to
compare that with the expression value of that same gene under some other
condition. A usual way to make the comparison is through a 2-sided t-test,
assuming normal distribution of replicated expressions, or by some other non-
parametric method. With three or so replicates per experiment, the statistical
significance of the difference between the two experiments typically is not very
impressive and only those genes that exhibit large up- or downregulation
between the two experiments can be identified with some confidence. Thus, due
to the various sources of errors or chance variations between two measurements,
DNA arrays cannot be used with great confidence to detect small (i.e., less than
1.5-fold changes) in expression levels across experiments. Even with this
constraint, one is left with, for example, 1000 genes that are identified as
significantly changed. To assign some confidence level to this finding, one can
perform t-tests, one for each gene, requiring 1000 total tests. Then, to correct for
the repeated testing, one can impose the usual Bonferroni correction to the
individual significance levels (i.e., require that the p-value for each gene be 1000
times smaller than, say, 0.05). Unfortunately, under these settings, the Bonferroni
condition turns out to be extremely restrictive and almost no genes with
significantly changed expression levels are detected with required statistical
confidence.

One way out of this impasse was suggested by Tusher and coworkers (2001),
who proposed a new method, significance analysis of microarrays (SAM). The
SAM procedure assigns “observed score” to each gene, depending on that gene’ s
expression level scaled by the standard deviation of replicated measurements.
Next, a number of “balanced” permutations of expression values are performed
and a similar score in each case is assigned, which is then finally averaged over
all permutations to compute the “expected score.” The scatter plot of observed
vs. expected scores is then used to identify significant changes in gene expres-
sion. With the additional adjustable threshold parameter, parameter � in the
original article (Tusher et al., 2001), one can control the overall false discovery
rate (FDR), the percentage of genes discovered to be potentially significant by
chance alone. With an FDR of � 5–10%, which is deemed acceptable, one is still
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left with dozens of genes that show statistically significant changes in expression
levels. SAM analysis has become a standard statistical technique for detecting
groups of genes with potentially significant change in their expression levels.
(SAM software is available at http://www-stat.stanford.edu/�tibs/SAM/index.
html.) Following such analysis, one can compile a table of significantly over- or
underexpressed genes, under different circumstances, with the expectation that
these genes most actively participate in the phenomenon under study.

III. Data Classification and Clustering

To go a step beyond simple recording of fold changes of gene expression
levels, various methods of data reduction and classification have been devised to
identify groups of genes that show similar expression patterns. To present the
results of such classification, it is useful to have an intuitive visual representation
(Eisen et al., 1998). This often is achieved by drawing dendrograms and/or
color-coded representations of similarly expressed genes. The most-common
approach to perform classification or grouping of data is by one of the many
clustering methods. Even though clustering methods are deterministic and
reproducible, they still are subjective, since they may yield different results
depending on the selected algorithm, normalization, distance metrics, etc. The
challenge is to select the most-suitable one for the purpose of the experiment, so
that the clustering produces results appropriate to the question being asked or the
hypothesis being tested.

To illustrate the issues involved, consider Table I. With each “Gene” (e.g.,
“Gene 2”) from this table, one can associate an “expression vector” with entries
“E2,1, E2,2, E2,3.. .” that are simply read off from the row corresponding to that
gene. In other words, the expression vector of a gene contains expression levels
of that gene in different experiments. The number of components (dimension) of
the expression vector equals the number of experiments (NE) and the number of
expression vectors equals the number of genes (NG). Geometrically, one can
think of the expression vector as a point (tip of the expression vector) in the
NE-dimensional “expression space,” so that each gene is uniquely assigned a
single point. The dimensionality of the expression space is equal to the number
of experiments (typically, between 10 and 100), while the number of points in
this space is equal to the number of genes (typically, several thousand). In order
to group the genes (or points in expression space) into clusters, one needs to
define some measure of distance between them. The most-straightforward and
most commonly used one is the geometric, Euclidean distance between the two
points (expression vectors) i and j, the square of which is defined as

Di,j
2 � �

k

(Ei,k � Ej,k)
2
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where the sum runs over all experiments k and Es are the appropriate expression
levels from Table I. The most-similar points are the ones with the shortest
Euclidean distance between them. Another possibility is to use some nongeo-
metric measure of similarity, such as the Pearson correlation, which basically
measures how similar are the directions in which the two expression vectors
point. Thus, one attributes greatest similarity to the points with the highest
correlation score. This method is widely used but has the drawback that it may
sometimes falsely attribute high correlation score to expression vectors that are
dissimilar. This may happen when there is an outlier in the data, such that overall
expression levels of two genes are unrelated but for a single experiment, in which
there is a common large peak, thus producing artificially high correlation. This
can be remedied by employing a different correlation measure, a jackknife
correlation, which is robust to single outliers, as proposed by Heyer et al. (1999).
Many other distance measures can be used but discussing them is beyond the
scope of this chapter.

As a somewhat “orthogonal” procedure to gene clustering, it often is useful
to perform experiment clustering. To achieve this, one can represent each
experiment by an “experiment vector,” with its entries read off from the
corresponding column of the expression matrix (see Table I). Thus, “Experiment
2” would be represented by an experiment vector with entries “E1,2, E2,2, E3,2,
etc.” The number of experiment vectors equals the number of different experi-
ments, while the length (dimension) of this vector equals the number of genes.
Each point in this “experiment space” corresponds to one experiment. By
introducing appropriate distance measure between two experiment vectors, one
then can cluster experiments according to their similarity.

Clustering experiments is particularly useful as a preliminary step to dis-
cover, for instance, eventual gross discrepancies between microarrays that may
occur with faulty arrays or because of other systematic errors. As an illustration,
we recently reported on a microarray experiment involving burn injury in rats
(Spies et al., 2002), where gene expressions in the skin tissues from burned rats
and normal rats were compared at four time points (2 hours, 6 hours, 24 hours,
and 240 hours after the injury). We used three replicate experiments for each
group: thus, 3 replicates � 2 groups � 4 time points � 24 experiments (arrays).
After clustering of experiments (arrays), it was discovered that one of the 24
arrays differed markedly from the rest. In this particular array, only about 800
genes were expressed, while in all others, the number of expressed genes
averaged around 4000. This difference was immediately visible in the clustering
of experiments. The faulty array was discarded from further analysis and a proper
one was substituted.

Experiment clustering also can be used to determine the overall effect of
treatment, or healing, on global expression profiles. For instance, in a recent
study of spinal cord injury (SCI) in rats (Nesic et al., 2002), we compared
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expression levels from spinal cord tissues of 1) rats with injured cord, 2) rats with
injured cord that were treated with N-methyl-D-aspartate (NMDA) receptor
antagonist MK-801, and 3) control (sham) animals. We used three replicates per
group and performed hierarchical clustering of nine experiments. The resulting
dendrogram, shown in Figure 1, correctly demonstrated that, overall, the injured
and MK-801-treated groups are more similar to each other than to the sham
group.

In a similar manner, one can use experiment clustering to follow the overall
healing process. To again cite an example from our study of burn injury in rats
(Spies et al., 2002), after all 24 experiments (arrays) were clustered, it was
evident that samples from burned skin 10 days after the injury were more similar
to control (unburned) samples than to samples from other burned groups. This
gave us the molecular imprint of the onset of healing process that already had
started 10 days post-injury.

With the defined distance measure, whether in the expression space or in the
experiment space, the next step is to select the appropriate clustering algorithm.

A. HIERARCHICAL CLUSTERING ALGORITHMS

Most gene-clustering algorithms are hierarchical. These methods are derived
(Eisen et al., 1998) from algorithms used to construct phylogenetic trees; the
most-similar genes are clustered first, while those with more-diverse profiles are
subsequently included in a stepwise hierarchy of increasing diversity. This means
that, in the first clustering step, the single most-similar expression profiles are
linked to form nodes, the most similar of which are linked further in the second
clustering step, and so forth, until all nodes finally are linked and the complete
hierarchical tree of proximities (dendrogram) is obtained. Starting from the
second clustering step and higher, each node may consist of two or more objects.
The distances between nodes must be recomputed at each step. This can be done,

FIG. 1. Dendrogram obtained by hierarchical clustering using average linkage between
normalized values of expression levels for 1322 probe pairs in nine DNA chips: three sham samples
(1–3), three injured spinal cord samples (4–6), and three injured spinal cord samples treated with
MK-801 (7–9).
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for example, by computing the distance between the nodes as the average
distance between its objects, as in the average linkage procedure, or as the
distance between two of its closest objects, as in the nearest-neighbor linkage
procedure. Other options include distances computed between the centers of
mass of clusters or their modifications. In most cases, however, average linkage
procedure is considered acceptable.

These different linkage choices are made to compensate for potential
problems with hierarchical clustering. Namely, as clusters grow in size, at higher
levels of hierarchy, the expression vector that represents the cluster may no
longer be representative of any of the genes in the cluster. Thus, actual expression
patterns of the genes themselves become less relevant on higher levels of
hierarchy. If a gene is assigned to the “wrong” cluster, this error cannot be
corrected later under hierarchical clustering.

B. NONHIERARCHICAL CLUSTERING ALGORITHMS

1. K-means Clustering

Sometimes, when a priori knowledge exists about the number of clusters
that should be obtained, one can use nonhierarchical K-means clustering to
partition the data. In this procedure, one first specifies the number of clusters (K),
then randomly assigns expression vectors to them. Distances between clusters are
recomputed, expression vectors are reassigned to the nearest cluster, and the
procedure is iterated until the point is reached when no new assignments are
made. The K-means clustering procedure simply partitions expression data into
K groups and does not produce a dendrogram, although one can be constructed
later by a hierarchical procedure.

2. Self-organizing Maps

Another frequently used nonhierarchical procedure is self-organizing maps
(SOMs), a neural network-based procedure for clustering. In this algorithm, one
also specifies in advance the number of clusters, chosen usually as the nodes of
a grid. The nodes are mapped into K-dimensional space, initially at random, and
then iteratively adjusted. During each iteration, a data point is randomly selected
and the node is moved towards that point by the amount proportional to its
proximity, so that more distant nodes are moved the least amount. In this way,
neighboring points in the initial geometry are mapped to nearby points in the data
space. This process usually is iterated tens of thousands of times. SOMs are
particularly useful for exploratory data analysis, in order to expose the global
patterns in the data.
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C. PRINCIPAL COMPONENT ANALYSIS

A somewhat more-familiar method for data reduction is the singular value
decomposition (SVD), or principal component analysis (PCA) as it is known in
statistics (Alter et al., 2000; Yeung and Ruzzo, 2001). In this procedure,
expression data from the “genes � experiments” expression space are trans-
formed to diagonalized “eigengenes � eigenexperiments” space, where eigen-
genes (or eigenexperiments) are unique orthonormal superpostion of genes (or
experiments). PCA is essentially a mathematical procedure that transforms a
number of (possibly) correlated variables into a (smaller) number of uncorrelated
variables called principal components. The first principal component accounts for
as much of the variability in the data as possible, with each succeeding
component accounting for as much of the remaining variability as possible. This
transformation represents the data in the new reduced coordinate space, in which
individual genes or experiments appear to be classified into groups of similar
functions or similar cellular state or phenotype. A simple illustration of PCA is
given in Figure 2, in which the first principal component of a two-dimensional
data set is shown by a straight line.

So far, the discussion has focused on the most common and most frequently
used clustering algorithms. One should note, however, that other approaches
exist, such as Bayesian and neural network algorithms, together with their
numerous variants and modifications, that have been implemented in many DNA
array studies.

FIG. 2. Principal component analysis (PCA) of a two-dimensional data cloud. The straight line
shown is the direction of the first principal component, which gives an optimal (in the mean-square
sense) linear reduction of dimension from two to one.
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D. BIOMEDICAL APPLICATIONS OF CLUSTERING

Use of clustering/classification procedures in microarray experiments has
been particularly fruitful in cancer research because cancers are complex,
multigenic diseases with a natural control group for the analysis — noncancerous
tissue (Alon et al., 1999; Lin et al., 2002). This was studied in prostate cancer
behavior (Singh et al., 2002), where a set of gene expression differences between
healthy and diseased tissues was detectable at the time of diagnosis. Alterna-
tively, clustering procedure can be used to compare cancerous tissues of the same
type and to distinguish between clinical subtypes, as was done in two types of
breast cancer (Hedenfalk et al., 2001). The procedure also was very efficient in
finding genes that distinguish between small blue cell tumors and leukemias
(Tibshirani et al., 2002) as well as in the discovery of a new subset of melanomas
(Bittner et al., 2000). The general conclusion drawn from these and other studies
is that different cancers can be classified by the characteristic expression patterns
of not more than dozens of genes. With more than 200 types of cancer, DNA
microarray experiments are becoming an important tool to distinguish between
their types and subtypes on the molecular level.

E. CLUSTERING OF TIME-COURSE EXPERIMENTS

An important class of DNA array experiments, in which data classification
and clustering have been used successfully, are time-course experiments. In this
setup, genome-wide expressions are measured at different time points in order to
discover the temporal pattern in the course of development, or during a response
to a treatment, or during a healing process. In this context, we mention the
important pioneering work by Tamayo et al. (1999), where the temporal patterns
of gene expression during the yeast cell cycle were classified by the SOM
algorithm. The expression measurements were taken at 16 equally spaced,
10-minute intervals over two cell cycles (160 minutes), yielding a total of 30
different patterns. The classification was able to successfully extract yeast
cell-cycle periodicity as the most prominent feature in the data and to select the
appropriate group of genes that participate in the cycling process.

Following this work, numerous articles have reported results of temporal
gene expression patterns under a variety of conditions. These include the
temporal gene expression mapping of central nervous system development in
rat’ s cervical spinal cord (Wen et al., 1998); response of human bronchial cells
to smoke and hydrogen peroxide (Yoneda et al., 2001); differentially expressed
genes in human myometrium during pregnancy and labor (Aguan et al., 2000);
and a range of experiments in toxicogenomics that measure response following
exposure to toxicants, to identify drugs that provoke adverse reaction (Castle et
al., 2002). A large-scale study of development and metabolic pathways in mice,
with approximately 1.8 million measurements of gene expressions based on 294
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microarray analyses of 49 adult and embryonic tissues (Miki et al., 2001),
is perhaps the best illustration of the versatility of time-course DNA array
experiments.

The time points where expression levels are measured in time-course
experiments need not be equally spaced, since biologically important events
often occur over different time scales. To give an example (Spies et al., 2002),
we analyzed the time course of healing and recovery of burn wounds in rats, with
measurements made at the following four time points: 2 hours, 6 hours, 24 hours,
and 240 hours after the burn injury.

The goal of our study was to identify local responses and initial cellular
responses to skin thermal injury by comparing expression profiles in burned and
unburned rat skin tissue. The associated genomic events include differential
expression of genes involved in cell survival and death, growth regulation,
metabolism, inflammation, and immune response. The dynamics of these events
is most clearly seen when genes with similar temporal expression patterns are
clustered together.

With only four data collection time points, the temporal change of the ratio
of burned vs. unburned expressions can be analyzed in considerable detail. Note
that, in this case, there are 27 possible dynamical patterns of temporal develop-
ment. At each time point, the value of the expression ratio (burned vs. unburned)
can be 1) increased with respect to the previous time, 2) decreased, or 3) remain
the same as the value at previous time. Thus, starting at some base value at time
1, the expression ratio can change/not change at later time points 2, 3, and 4,
giving 33 � 27 possibilities of development (Figure 2).

More generally, with t time points, there are 3(t�1) dynamical patterns.
This number can become quite large quickly with increasing numbers of time
points. For instance, with 17 time points equally spread over a 160-minute
interval during two yeast cell cycles, as used in the already-mentioned work
of Tamayo et al. (1999), there are over 43 million (316) mathematically
possible different patterns. Of course, in this and similar cases, it is quite
unrealistic and, indeed, completely unnecessary to consider all possible
patterns in detail. What one needs is to classify existing data into a small
number of characteristic patterns (clusters) with some global features like
“ clusters with peak expressions at 25–45 minutes and 85–105 minutes”
(Tamayo et al., 1999) that correspond to some meaningful biological events.
This is precisely what a clustering algorithm such as SOM performs: it
searches through the large “pattern space” for the small set of characteristic
patterns that reflects global features of the entire set. Alternatively, in
dynamical system parlance, one can think of the final characteristic clusters
as attractors and of sets of patterns assigned to them as points that fall into
their domains of attraction.
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Returning to the example at hand, the complete set of 27 patterns that can be
obtained with four time points is shown in Figure 3. The total number of genes
in our data is 781.

Note that Figure 3 shows only the generic shapes of possible patterns, not
the actual data, and that the four time points (1–4) are drawn as equidistant to
simplify the graphics. By simple visual inspection, one can see that the “popu-
lation” of patterns, specified by the number “N” in the figures, differs widely
between the patterns, from N � 1 in pattern 4 to N � 133 in pattern 17. This
indicates that some types of expression patterns are much more frequent than
others. In particular, of 781 genes in this example, 88% (685) of them show
significant over- or underexpression between time points 1 and 2 (i.e., in the
period between 2 and 6 hours following the injury). The remaining 12% (96) do
not change their expression levels appreciably during the same period. Moreover,
just eight genes (patterns 2 and 3) exhibit increased (decreased) late-stage
activity only, during the 24- to 240-hour period, without significant change in
their activity prior to this time. The dynamics that emerges suggests that in the
early phase (i.e., an hour or so after the injury), most genes (88%) involved in the
entire 10-day process change their activity. This is consistent with the dynamics
of the wound-healing process, which can be divided into an early phase of abrupt
energy depletion and necrosis, followed by a two-stage inflammatory phase,
delayed cell death, formation of granulation tissue, and matrix formation and
remodeling (Spies et al., 2002).

The particular set of genes participating in these processes can be analyzed
in detail by examining each cluster separately. Consider, for illustration, cluster
6 (i.e., pattern 6) that includes 24 genes, as shown in Figure 4. The numbers 1–24
in this figure label the particular genes that belong to the cluster (their names are
listed in the separate table, not included). In this and other figures, the time points
are drawn as equidistant to simplify the drawing.

With images like this, one can see that all genes in this cluster show a peak
of activity at time 3 (24 hours post-injury), as specified by generic pattern 6 from
Figure 3. A better view of the patterns of change is obtained in the three-
dimensional rendering of this image, where the third dimension is the value of the
expression ratio (see Figure 5).

Yet another view of cluster 6, this time from the direction of time axis,
shows more precisely the amount of over- or underexpression of the genes
involved (Figure 6). From this view, one can simply read off the amount by
which the genes in this cluster from the burned tissue are over- or underexpressed
with respect to the unburned one. With this information from all clusters, and
knowledge of the particular genes involved (especially their metabolic functions,
protein products, etc.), one can reconstruct patterns of biological activity during
the wound-healing process. A detailed presentation of this and other analyses for
all clusters will be published separately (Nesic et al., 2002).

86 N.M. SVRAKIC ET AL.



FIG. 3. Generic shapes of 27 possible dynamical patterns of gene expressions from four
time-point measurements. Number “N” inside each box denotes the number of genes in our data that
exhibit that pattern. The labeling (1–27) of patterns is arbitrary.
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Clustering of gene expression patterns can be improved by including
additional, more-complex relationships beyond simple coexpression that are
implicit in time-course patterns. For example, a gene may activate or control
another gene downstream in the pathway, thus introducing a time-delayed
response. Another possibility is that two genes have opposing influences on each
other, so that when the activity of one increases, the activity of the other
decreases, producing inverted correlation. A study in this direction has been
reported by Qian et al. (2001) where, instead of simple direct correlation, four
different correlation measures between gene expression patterns have been taken
into account: 1) simultaneous correlation, 2) time-delayed correlation, 3) inverted
correlation, and 4) inverted and time-delayed correlation. The method was
applied to the yeast cell-cycle data set of Tamayo et al. (1999) and new
interactions were identified, implying new biological relationships between
genes. Still, with this and other improvements such as time warping (Aach and
Church, 2001) and dynamical modeling (Holter et al., 2001; Ramoni et al.,
2002), much research remains to be done on the systematic classification and
clustering of gene expression patterns from time-course DNA array experiments.

IV. Beyond Simple Clustering: Genetic Regulatory Networks

Clustering gene expressions into similar patterns usually is performed with
the expectation that “coexpressed genes are coregulated,” a plausible assumption

FIG. 4. Representation of the ratio of expression levels for 24 genes in cluster 6 over time points
1–4 (2 hours, 6 hours, 24 hours, and 240 hours, respectively). Note the common peak of expression
ratio at time point 3, visible as lighter shade.
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(Spellman et al., 1998) that is, however, not universally true. Simultaneous
detection of overexpression of two different genes does not necessarily imply
that they are regulated by the same pathway, even if they appear together in the
same cluster after a stimulus is applied to the cells. Many stimuli are known to
initiate several different genomic-scale processes simultaneously, so that
observed synchronicity in gene expression at certain times may be purely
coincidental.

In order to move beyond simple coexpression, one has to establish which
genes in some cluster also share common regulatory elements that control
their expression levels (a group of genes regulated by a common element has
been dubbed “ regulons” in recent literature). The final goal of such analysis
is to construct genetic regulatory networks and to identify the function of
many thousands of novel genes (Tavazoie et al., 1999). This approach has
been successful in yeast (Lyons et al., 2000), for which the complete
sequence of promoter regions is known. Unfortunately, this is not the case
with mammalian or other systems, where untranslated first exons, followed
by introns greater than 10 kb in size, can make promoter identification

FIG. 5. Three-dimensional view of the ratio of expression levels for 24 genes in cluster 6. All
genes exhibit common dynamical pattern: initial stagnation, then peak of activity at time 3 (24 hours
after the injury), followed by a drop in activity at time 4 (10 days after the injury). Numbers 1–24
label the particular genes involved, specified in a separate table (not provided).
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extremely difficult. In many organisms, the promoter regions have not been
fully sequenced. To construct the network for the phenomenon in question,
one must use statistical algorithms for clustering and motif discovery in
combination with genomic data, cis-regulatory analysis, and known molec-
ular biology of the process studied. In spite of all the difficulties, several
genetic regulatory networks, or parts of them, have been constructed. David-
son et al. (2002) have mapped a gene regulatory network in sea urchin
embryo that controls the specification of endoderm and mesoderm. Such
studies reveal that, in addition to comprehensive gene expression maps (Kim
et al., 2001) obtained by DNA array measurements, one needs as much other
genome-wide information as can be mustered to unravel the intricate patterns
of genetic interactions in biological processes.

Simultaneously with this development, additional knowledge is accumulat-
ing regarding the statistical nature of naturally occurring networks. Many
biological networks (e.g., genetic, metabolic) exhibit “ small world” -scale free
behavior (Watts and Strogatz, 1998). This means that although the network may
possess thousands of nodes, the path leading from one node to another is
remarkably short. Such architecture may serve to minimize transition times
between metabolic states or provide robustness against mutations (Fell and
Wagner, 2000; Jeong et al., 2000; Wagner, 2000). These new insights, combined
with the knowledge of biological processes, may lead us for the first time towards
understanding biology at the systems level (Kitano, 2002).

FIG. 6. Side view of the gene expression patterns shown in Figure 5, exhibiting the range of
expression change over all time points.
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